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1. Background and Introduction 

Thermal ablation is widely accepted as a method of treatment for certain benign or 

malignant tumors in the kidneys, liver, and bones [1, 2]. The most prevalent forms of 

thermal ablation include radiofrequency ablation (RFA) and microwave ablation (MWA), 

owing to their ability to generate heat in the tissue and raise the tissue temperature to 

the lethal point, 50-60 °C [2]. This temperature range is known to induce coagulation 

necrosis, i.e. cell death. The principle mechanisms behind RFA and MWA are the Joule 

effect and dielectric heating, respectively [2]. Briefly, according to the Joule effect, or 

Joule’s first law, RF current causes resistive heat in the electric conductive tissue, 

whereas MWA introduces electromagnetic field to create molecular motions, 

generating heat due to the dielectric property of the tissue [2].  MWA is shown to be 

more promising in treating tumors, especially for those who have a tumor diameter 

greater than 3 cm and for tissues that have high impedance which prevents RF current 

flow, because of its capability to rapidly generate heat and to ignore tissue impedance 

[1, 2, 3]. 

 

A typical percutaneous surgical procedure for MWA involves insertion of an antenna, 

which acts as the applicator, into the tumor area with image guidance. A power 

generator supplies a power of around 0-300W depending on the number of antennae 

employed and the frequency used [1, 2, 3]. Specifically, there are three types of MWA: i) 

First generation without a coupled cooling system; ii) Second generation with a coupled 

cooling system but limited magnitude of power; iii) Third generation with both cooling 

and high power generation abilities [1]. The temperature profile, or the ablation zone, is 

primarily influenced by the tissue properties and the microwave interaction with the 

tissue [3]. 

 

2. Problem Statement 

Hepatic tumors are a common target of MWA, and a theoretical model could enable us 

to gain an insight into the heat transfer behavior to further study the relationship 

between propagation of the electromagnetic wave and heat transfer in the liver tissue 

[3]. The aim of this project is to model a 1-Dimensional temperature profile within 

hepatic tumor tissue from the tip of the applicator to 1 cm beneath the tissue to justify 

the aforementioned heat conduction and ablation efficiency with respect to time and 

space with given tissue properties, ablation system properties, an initial condition, and 

boundary conditions.  
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3. Relevant Mathematical Background 

Microwave ablation is an attractive technology for clinical application because of fast 

and high heat delivery to target tissue and, in some cases, no contact requirement. 

Microwave generators deliver electromagnetic energy to target tissues through an 

antenna probe at frequencies of 915 Mhz or 2.45 Ghz. These high electromagnetic 

frequencies induce rotation of molecules, such as water and proteins, rapidly generating 

heat in tissue. This process is called dielectric heating and is the fundamental 

transformation of energy in this system [3,4,6].  

For the effective treatment of clinically observed liver tumors, the microwave ablation 

device must create a uniform heating area that can extend past the boundaries of the 

malignancy [3].  

In this report, the goal is to model the temperature of tissue in a region-of-interest 

undergoing microwave ablation. A faithful representation of this medical treatment will 

describe the interaction of electromagnetic energy with liver tissue and the diffusion of 

delivered-heat through targeted tissue. 

Microwave energy is characterized by Maxwell’s equations [3]. 

 

∇ ∙ 𝑫 = 𝜌𝑓𝑟𝑒𝑒 

∇ ∙ 𝑩 = 0         

∇ ×  𝑬 = −
𝜕𝑩

𝜕𝑡
 

∇ ×  𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
 

 

D [C/m2] electric flux density 

B [T] magnetic field 

E [V/m] electric field strength 

H [A/m] magnetic field intensity 

𝜌𝑓𝑟𝑒𝑒 [C/m2] free charge density 

J [A/m2] current density 
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The Maxwell equations can then be solved to determine the propagation of 

electromagnetic energy through a region of interest. The interactions of these 

electromagnetic fields with biological tissue can then be characterized using tissue 

properties such as density, specific heat, permittivity, and conductivity [6]. Materials 

that do not effectively absorb electromagnetic energy are referred to as low-loss, 

whereas other materials may exhibit high absorption of electromagnetic energy. This 

absorptivity can be defined as the material’s conductivity, σ, divided angular frequency, 

ω, and dielectric permittivity, ε [3,4]. 

𝜀𝑟 = 𝜀′𝑟 −
𝑗𝜎

𝜔𝜀0
 

Since most biological tissue is highly absorbing of propagating electromagnetic energy, 

its permittivity can be described with consideration of the electromagnetic frequency. 

The Cole-Cole model describes tissue permittivity as a function of frequency and tissue 

property constants [3].  

 

 

𝜀(𝑓) = 𝜀∞ −
𝛴(𝜀𝑠 − 𝜀∞)

1 + (𝑗2𝜋𝑓𝜏𝑛).
1−𝛼𝑛

+
𝜎𝑖
2𝜋𝜀0

 

 

 

𝜀∞ permittivity at infinite frequency 

𝜀𝑠  permittivity at dc 

f     frequency 

𝜏𝑛  relaxation time constant 

α    attenuation constant  

𝜎𝑖 [S/m] dc conductivity 

 

The conductivity and permittivity of tissue, like most biological systems, is dependent 

upon temperature itself. Temperature dependence of tissue dielectric properties arises 

primarily from the significant water concentration in organ tissue [3,6]. As microwave 

ablation heats an area of tissue, water molecules evaporate and rising temperatures 

irreversibly change protein structures, causing the conductivity and permittivity of the 

tissue to change [4]. 
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To describe the heat diffusion in tissue, the Pennes bioheat equation is commonly 

employed.

 

 

 

𝜌𝑐
𝑑𝑇

𝑑𝑡
=  ∇ ∙ 𝑘∇𝑇 + 𝑄𝑀𝑊 − 𝑄𝑝 + 𝑄𝑚 

 

 

 

 

𝜌 [
𝑘𝑔

 𝑚3
 ] mass density  

𝑐 [
𝐽

𝑘𝑔𝐾
] specific heat  

𝑘 [ 
𝑊

𝑚𝐾
 ] thermal conductivity  

𝑇 [ 𝐾 ] temperature  

𝑄 [ 
𝑊

𝑚3 ] absorbed EM energy  

𝑄𝑝[ 
𝑊

𝑚3 ] heat loss blood profusion  

𝑄𝑚[ 
𝑊

𝑚3 ] metabolic heat generation

 

 

 

𝑄𝑝 = 𝜔𝑏𝑙𝑐𝑏𝑙(𝑇 − 𝑇𝑏𝑙) 

 

 

 

 

 

 

 

 

 

 

  

𝜔𝑏𝑙 [ 
𝑘𝑔

𝑚3𝑠
 ] blood profusion rate 

𝑐𝑏𝑙 [ 
𝐽

𝐾𝑔𝐾
 ] specific heat capacity blood 

𝑇𝑏𝑙 [ 𝐾 ] blood temperature 



6 
 

The heat source component QMW is generated in tissue by the electromagnetic energy 

absorption. This equation is called the specific absorption rate, SAR and describes the 

microwave heat source term in this system as a function of conductivity and electric field [3].  

𝑄 =
1

2
𝜎|𝐸|2 

Now that the overall heat equation is defined and so is the thermal conductivity of tissue with 

respect to temperature, the focus can shift to the final piece of the SAR equation – the electric 

field component. This report has previously discussed how microwave dynamics can be 

described in terms of an electric field using the Maxwell equations. Therefore, to begin 

derivation of an electric field equation that is representative of microwave energy in this 

system, one can examine device constants.  

A typical clinical microwave ablation device operates with 100 Watts of power at a frequency of 

2.4 GHz. 

𝑃 = 𝐼 ∗ 𝑉    [𝑊𝑎𝑡𝑡𝑠 =
𝐽𝑜𝑢𝑙𝑒𝑠

𝑠𝑒𝑐
] 

𝑓 = 2.4 𝐺𝐻𝑧 
𝜔 = 2𝜋𝑓 

 
From the power formula, current can be defined in terms of power and voltage.  The current 

can then be substituted into the charge equation, q: 

𝑞 = 𝐼 ∗ 𝑡 = 𝐼𝑚 sin(𝜔𝑡) ∗ 𝑡 

𝑞 =
𝑃

𝑉𝑚 sin(𝜔𝑡)
𝑡 =

𝜀0𝐴

2𝑑
𝑉𝑚 sin(𝜔𝑡) 

Charge q is now defined in terms of voltage and frequency. It can now be input into the electric 

field equation for a conducting sphere: 

𝐸 =  
𝑞

4𝜋𝜀0𝑟2
    [

𝑉𝑜𝑙𝑡𝑠

𝑚
] 

Substitution of the q term into the spherical conductor equation produces an electric field 

equation that is dependent on source voltage, frequency, and distance from source [3,4,6]. 

𝐸 =  
𝑉𝑚 sin(𝜔𝑡)𝑑

2𝑟2
    [

𝑉𝑜𝑙𝑡𝑠

𝑚
] 

Considering that the final electric field equation for this microwave generator is dependent on 

voltage, one can work in reverse and solve for the electric field in terms of power. 

𝐸2 =
𝑃

𝐴𝜀0𝑑
𝑡     
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Figure 1. The surface plot above represents the intensity of the electric field generated by microwave 

system in this model. Notice that intensity is very high in a 2mm radius surrounding the ablation probe 

and falls off sharply thereafter. The spatial distribution visualized here is characteristic of any electric 

field governed by the Inverse-Square Law. 

Considering the electric field dynamics described in this section, it is apparent that appropriate 

antenna designs must be incorporated into any effective clinical microwave ablation device to 

deliver adequate energy. The electric filed is crucial to the dielectric hysteretic heating 

observed in tissue ablation and enables microwave devices to have superior targeting and 

temperature control. Similar modeling approaches can be used for representing the electric 

and magnetic fields in RF-ablation and electrocautery.  

Table 1. Constants relevant to heat diffusion for hepatic tissue and blood at 37°C. [4, 5] 

Constants at 37°C Hepatic Tissue Blood 

Ρ (density) [kg/m3] 1060 1000 

c (specific heat) [J/kg*K] 3600 4180 

w (perfusion) [1/s] NA 0.0064 

k (thermal conductivity) 
[W/m*K] 

0.512 0.67 

σ (electrical conductivity) [S/m] 1.05 (but a function of T as 
temperature changes) [6] 

0.667 
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4. Mathematical Solution 

4.1 Simplified Equation Solution 

Initially, an analytical solution to the full bio-heat equation was attempted. The solution that 

was arrived at and presented, however, was later realized to not be accurate. The nature of the 

full bio-heat equation makes an analytical solution prohibitively difficult to attain. With this in 

mind, a simplified version of the system was formulated.  

In this simplified system, the heat provided by the microwave antenna is not represented by a 

source term, but by a constant boundary temperature, TM. Many ablation systems regulate the 

temperature of the antenna to a constant level, so this is a reasonable assumption [1]. A further 

simplification of this model is that temperature change due to perfusion is also ignored. This 

should be kept in mind when viewing the results, as perfusion would normally be pushing the 

overall temperature of the system towards normal body temperature, To.  As a result of these 

simplifications, the equation that we set out to solve analytically was the following: 

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2
    With Initial and Boundary conditions:  {

𝑇(𝑥, 0) = 𝑇𝑜
𝑇(0, 𝑡) = 𝑇𝑀
𝑇(𝐿, 𝑡) = 𝑇𝑜

 , and  𝐷 =  
𝑘

𝜌𝐿𝑐𝐿
 

where D is a constant determined by k, the heat diffusion coefficient; ρL, the density of liver 

tissue; and cL, the specific heat of liver tissue. The initial condition sets the system at regular 

body temperature, To=37°C. The left boundary condition is TM =100°C, as discussed above, and 

the right boundary condition is the end of the ablation zone, assumed to be a blood vessel, 

which provides a constant heat value of To. A length L of 4 cm is used, which corresponds to a 

3cm tumor radius + 1cm buffer zone. 

This is a standard heat equation with inhomogeneous boundary conditions. It was solved using 

the poison tooth extraction method. A homogeneous solution and a particular solution were 

found and added together to determine the full form of the solution to the equation. Once this 

was done, the constant An was found to complete the solution.  

The first step was the homogeneous solution with boundary conditions equal to zero. This is 

solved for through the separation of variables method. This process is shown below. 

Step 1, substitute the temperature function for two single-variable functions and rearrange: 

𝑇(𝑥, 𝑡) = 𝜙(𝑥)𝐺(𝑡) 

𝜙(𝑥)
𝜕𝐺(𝑡)

𝜕𝑡
= 𝐷 

𝜕2𝜙(𝑥)

𝜕𝑥2
𝐺(𝑡) 
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𝜕𝐺(𝑡)
𝜕𝑡
𝐺(𝑡)

∗
1

𝐷
=

𝜕2𝜙(𝑥)
𝜕𝑥2

𝜙(𝑥)
= −𝜆 

One half of this equation is dependent solely on t, while the other is dependent solely on x. 

Because the two halves are equal but dependent on different variables, they must both be 

equal to a constant, given by –λ.  

Step 2, split the equation into two ODE halves and solve each independently. 

Step 2.1, solving the time-dependent equation: 

𝜕𝐺(𝑡)
𝜕𝑡
𝐺(𝑡)

∗
1

𝐷
= −𝜆 

𝜕𝐺(𝑡)

𝜕𝑡
+ 𝜆𝐷𝐺(𝑡) = 0 

𝐺(𝑡) = 𝑒−𝜆𝐷𝑡 

Step 2.2, solving the space-dependent equation: 

𝜕2𝜙(𝑥)
𝜕𝑥2

𝜙(𝑥)
= −𝜆 

𝜕2𝜙(𝑥)

𝜕𝑥2
+ 𝜆𝜙(𝑥) = 0 

𝜙(𝑥) = 𝐴𝑐𝑜𝑠(√𝜆𝑥) + 𝐵𝑠𝑖𝑛(√𝜆𝑥) 

Step 3, substitute in the zero value boundary conditions to find λ: 

𝜙(0) = 0 = 𝐴𝑠𝑖𝑛(0) + 𝐵𝑐𝑜𝑠(0) 

0 = 𝐵 

𝜙(𝐿) = 0 = 𝐴𝑠𝑖𝑛(√𝜆𝐿) 

√𝜆𝐿 = 𝑛𝜋  Where  𝑛 = 1, 2, 3, … 

𝜆 = (
𝑛𝜋

𝐿
)
2

 

𝜙(𝑥) = 𝐴𝑛 sin (
𝑛𝜋

𝐿
𝑥) 
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Step 4, recombine the two halves of equation and take their linear combination by the 

superposition principle for the homogeneous solution, TH(x,t): 

𝑇𝐻(𝑥, 𝑡) = 𝜙(𝑥)𝐺(𝑡) =  ∑𝐴𝑛 sin (
𝑛𝜋

𝐿
𝑥) 𝑒−(

𝑛𝜋
𝐿
)
2
𝐷𝑡

∞

𝑛=1

  

With the homogeneous solution obtained, the next step is to solve for the particular solution. 

This is done by assuming steady state conditions and the original boundary conditions.  

Step 5, determine the equation at steady state: 

𝜕𝑇

𝜕𝑡
= 0 (Steady state condition) 

0 =  𝐷
𝜕2𝑇

𝜕𝑥2
 With initial and boundary conditions: {

𝑇(𝑥, 0) = 𝑇𝑜
𝑇(0, 𝑡) = 𝑇𝑀
𝑇(𝐿, 𝑡) = 𝑇𝑜

 

Step 6, solve for TP(x): 

𝑇𝑃(𝑥) = ∫∫0 𝑑𝑥 𝑑𝑥 = 𝑐1𝑥 + 𝑐2 

𝑇𝑃(0) = 𝑇𝑀 = 𝑐1(0) + 𝑐2 

𝑐2 = 𝑇𝑀 

𝑇𝑃(𝐿) = 𝑇𝑜 = 𝑐1(𝐿) + 𝑇𝑀 

𝑐1 =
𝑇𝑜 − 𝑇𝑀

𝐿
 

𝑇𝑃(𝑥) =
𝑇𝑜 − 𝑇𝑀

𝐿
𝑥 + 𝑇𝑀 

Step 7, combine the particular and homogeneous solutions for the full solution: 

𝑇(𝑥, 𝑡) =
𝑇𝑜 − 𝑇𝑀

𝐿
𝑥 + 𝑇𝑀 +∑𝐴𝑛 sin (

𝑛𝜋

𝐿
𝑥) 𝑒−(

𝑛𝜋
𝐿
)
2
𝐷𝑡

∞

𝑛=1

 

Step 8, solve for the constant An using the equation for An 

𝐴𝑛 =
2

𝐿
∫ (𝑢(𝑥, 0) − 𝑇𝑃(𝑥)) sin (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0
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𝐴𝑛 =
2

𝐿
∫ (𝑇𝑜 −

𝑇𝑜 − 𝑇𝑀
𝐿

𝑥 − 𝑇𝑀) sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

 

𝐴𝑛 = ∫ (𝑇𝑜 − 𝑇𝑀) sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥 +

2

𝐿
∫ (

𝑇𝑜 − 𝑇𝑀
𝐿

𝑥) sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

𝐿

0

 

Here the integral is split into two parts. The first integral is simpler and will be solved first. The 

second integral requires integration by parts and will be solved afterwards. 

Step 8.1, solve the first integral: 

2

𝐿
∫ (𝑇𝑜 − 𝑇𝑀) sin (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

=
2(𝑇𝑜 − 𝑇𝑀)

𝐿
∫ sin (

𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

  

=
2(𝑇𝑜 − 𝑇𝑀)

𝐿

−𝐿

𝑛𝜋
(cos(𝑛𝜋) − cos(0)) =

−2(𝑇𝑜 − 𝑇𝑀)

𝑛𝜋
((−1)𝑛 − 1) 

Step 8.2, solve the second integral using integration by parts: 

2

𝐿
∫ (

𝑇𝑜 − 𝑇𝑀
𝐿

𝑥) sin (
𝑛𝜋𝑥

𝐿
) 𝑑𝑥 =

2(𝑇𝑜 − 𝑇𝑀)

𝐿2
∫ 𝑥𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0

𝐿

0

 

𝑢 = 𝑥     𝑑𝑣 = sin (
𝑛𝜋𝑥

𝐿
)𝑑𝑥 

𝑑𝑢 = 𝑑𝑥     𝑣 = −cos (
𝑛𝜋𝑥

𝐿
) 
𝐿

𝑛𝜋
   

2(𝑇𝑜 − 𝑇𝑚)

𝐿2
[−𝑥𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)
𝐿

𝑛𝜋
− ∫ −cos (

𝑛𝜋𝑥

𝐿
)
𝐿

𝑛𝜋
𝑑𝑥

𝐿

0

 ] 

=
2(𝑇𝑜 − 𝑇𝑚)

𝐿2
[−𝑥𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
)
𝐿

𝑛𝜋
+ sin (

𝑛𝜋𝑥

𝐿
) (

𝐿

𝑛𝜋
)
2

]
0

𝐿

 

=
2(𝑇𝑜 − 𝑇𝑚)

𝐿2
[−

𝐿2

𝑛𝜋
𝑐𝑜𝑠(𝑛𝜋) + sin(𝑛𝜋) (

𝐿

𝑛𝜋
)
2

− 0 − sin (0) (
𝐿

𝑛𝜋
)
2

] 

=
2(𝑇𝑜 − 𝑇𝑚)

𝐿2
[−

𝐿2

𝑛𝜋
(−1)𝑛 + 0 − 0 − 0] 

=
−2(𝑇𝑜 − 𝑇𝑚)

𝑛𝜋
(−1)𝑛 

Step 8.3, recombine the two integrals: 
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𝐴𝑛 =
−2(𝑇𝑜 − 𝑇𝑀)

𝑛𝜋
((−1)𝑛 − 1) −

2(𝑇𝑜 − 𝑇𝑚)

𝑛𝜋
(−1)𝑛 

𝐴𝑛 =
−2(𝑇𝑜 − 𝑇𝑀)

𝑛𝜋
((−1)𝑛 − 1 − (−1)𝑛) 

𝐴𝑛 =
2(𝑇𝑜 − 𝑇𝑀)

𝑛𝜋
 

Step 9, assemble the full analytical solution: 

𝑇(𝑥, 𝑡) =
𝑇𝑜 − 𝑇𝑀
𝐿

𝑥 + 𝑇𝑀 +∑
2(𝑇𝑜 − 𝑇𝑀)

𝑛𝜋
sin (

𝑛𝜋𝑥

𝐿
) 𝑒−(

𝑛𝜋
𝐿
)
2
𝐷𝑡

∞

𝑛=1

 

This solution was plotted in MATLAB. The resultant graph is shown in Figure 2 and Figure 3. The 

values used for the constants are given in Table 1. Note that temperatures near the center of 

the region, closest to the heat, reach lethal heat levels of 50+°C, but further from the center 

this drops off relatively quickly [2].  

 

Figure 2. An isometric view of the analytical solution. The initial temperature at time zero is 

37°C. The boundary temperature at x=0, where the heat is applied, is 100°C. Heat diffuses 

throughout the tissue as time increases. 
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Figure 3. Another view of the analytical solution, showing the spatial temperature gradient. 

To validate the analytical solution, a numerical solution to the equation was found using 

MATLAB’s pdepe function. This result is shown below in Figure 4.  

 

Figure 4.  Numerical solution to the equation. This shows the same trend as the analytical 

solution, verifying that the solution is accurate. 
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Figure 5. Numerical solution showing the spatial temperature gradient. Again, this is faithful to 

the analytical solution. 

4.2 Full Solution 

The simplified system provides an acceptable starting point to draw conclusions from, but it 

does not show the complete picture. In actuality, the electric field acts as a source term, 

providing energy to the whole system, not just the boundary. Additionally, the energy loss due 

to blood perfusion, which was ignored in the simplified equation, must be taken into account 

again. Furthermore, the tissue’s electrical conductivity, σ, is not actually a constant, but a 

temperature-dependent variable [6]. With this information in mind we return to the original 

Pennes Bio-Heat Equation, given again below.  

𝜌𝐿𝑐𝐿
𝜕𝑇

𝜕𝑡
= ∇𝑘∇𝑇 + 𝑄𝑀𝑊 − 𝑄𝑃 +𝑄𝑚 

Note that metabolic heat generation, Qm is still negligible. The thermal conductivity k is 

constant with respect to x and the QP term represents the energy source of the microwave. 

Based on the literature research on electric field strength in MWA, the electric field can 

reasonably be modeled as a constant of 1000V/m [6]. With these specifics, the source terms 

can be defined as given below. 

𝑄𝑀𝑊 =
1

2
|𝐸|2𝜎(𝑇) =

1

2
|𝐸|2 ∗ 𝑎3 [1 −

1

1+𝑒𝑎1(𝑎2−𝑇)
]  , where  𝑎1 = 0.0697; 𝑎2 = 85.375; 𝑎3 = 2.173 

𝑄𝑃 = −𝜌𝑏𝑐𝑏𝑤(𝑇 − 𝑇𝑜) 
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Note that the expression for σ(T) as well as the values for the constants a1- a3 are based on 

literature [6]. Substituting these into the Bio-Heat equation gives the full equation, 

𝜌𝐿𝑐𝐿
𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑥2
+
1

2
|𝐸|2𝑎3 [1 −

1

1 + 𝑒𝑎1(𝑎2−𝑇)
] − 𝑐𝑏𝑤(𝑇 − 𝑇𝑜) 

With initial and boundary conditions,  

{
 

 
𝑇(𝑥, 0) = 𝑇𝑜
𝜕𝑇(0, 𝑡)

𝜕𝑥
= 0

𝑇(𝐿, 𝑡) = 𝑇𝑜

 

Note that the left boundary condition is different here from the simplified model. This zero flux 

condition indicates that the temperature is not changing at the location of the microwave 

antenna. This is valid because the high temperature and low surface area of microwave 

antennae used in ablation result in little heat flux into or out of the probe itself. The other two 

conditions are unchanged from the simplified equation.  

Solving the full equation in MATLAB using pdepe gives the following results, shown in Figures 6, 

7, and 8. The temperature reaches a maximum of 60°C, high enough to cause tissue death [2], 

and this level is sustained throughout the full region up until the border, which is cooled to the 

level of body temperature by a blood vessel (right boundary condition).  

 

Figure 6. The diffusion of heat across time and space in the full model of hepatic tumor MWA.  
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Figure 7. An alternate view of the full numerical solution, showing the temperature reached vs 

the distance from the microwave antenna. 

 

Figure 8. An alternate view of the full numerical solution, showing the temperature reached vs 

the duration of treatment. 
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5. Discussion  

Due to the nonlinear nature of the tissue electric conductivity and the complexity of the blood 

perfusion equation in the governing partial differential equation, a simplified heat conduction 

model with modified boundary conditions was derived. As Figures 3 and 5 show, lacking of 

driving forces results in a decaying behavior of the temperature profile over the defined 

distance, and constant temperatures at the boundaries.  

In contrast, the numerical solution to the full equation suggests that under the given initial and 

boundary conditions, a constant electric field and blood perfusion give rise to a saturating 

behavior as time proceeds as suggested in Figure 7. Moreover, Figure 8 shows that within the 

given time window, the temperature reaches the desired lethal point throughout the entire 

profile of the tumor tissue and drastically drops to body temperature near the far end 

boundary. These observations suggest that the model could serve as the theoretical heat 

diffusion model for the first generation MWA since there is no coupling cooling system to help 

prevent potential tissue damage due to heat near the far end of the boundary. 

A suggested future model that matches the realistic situations should include the development 

of the system complexities, i.e. the interactions between microwave and the tissue, as well as 

the effect of a cooling agent. 
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Appendix A: MATLAB Code for Simplified Analytical Solution 

%% Microwave Thermal Ablation Analytical Solution 
clear;   
clc;  

  
% Constants 
L = 0.04; % meters 
k = 0.512;%W/(m*C); thermal conductivity 
rho_bl = 1000; %blood density; kg/m3 
rho_liver = 1060;  %liver density; kg/m3 
c_bl = 4100; %specific heat of blood J/(kg*C) 
c_liver = 3600; %specific heat of liver J/(kg*C) 
w = 0.0064; %Blood perfusion rate; 1/s 
T_core = 37; %Core temperature; degree C 
sig = 1.05; %electrical conductivity  
T_m = 100; %boundary heat condition, provided by the microwave antenna 

  
D = k/(rho_liver*c_liver); 

  
xmesh = 0:.0001:L; 
tmesh = 0:0.3:300; 
[xx,tt]=meshgrid(xmesh,tmesh); 

  

  
T_expansion = zeros(length(tmesh),length(xmesh)) + (T_core-T_m)/L.*xx+T_m; % 

Poison Tooth Homogeneous + Particular 

  
for n = 1:5000 
    a_n = 2*(T_core-T_m)/(n*pi);  
    T = a_n.*sin(n*pi.*xx/L).*exp(-D*(n*pi/L)^2.*tt);  
    T_expansion = T_expansion + T;%T1+T2+T3;    
end 

  
figure(1) 
surf(tt,xx,T_expansion,'EdgeColor','none') 
%surf(tt,-xx,T_expansion,'EdgeColor','none') 
xlabel('t') 
ylabel('x') 
zlabel('T(x,t)') 
title('Microwave Ablation Analytical Solution') 
colormap jet 
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Appendix B:  MATLAB Code for Simplified Numerical Solution 

%% Microwave Thermal Ablation Analytical Solution 
clear;   
clc;  

  
global T_core T_m D  
L = 0.04; 
k = 0.512;%W/(m*C); thermal conductivity 
rho_liver = 1060;  %liver density; kg/m3 
c_liver = 3600; %specific heat of liver J/(kg*C) 
T_core = 37; %Core temperature; degree C 
T_m = 100; 

  
D = k/(rho_liver*c_liver); 

  
xmesh = 0:.0001:L; 
tmesh = 0:0.3:300; 
%[xx,tt]=meshgrid(xmesh,tmesh); 
%%  Numerical Solution 

  
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 

  
figure(2) 
hold on 
surf(tmesh,xmesh,sol_pdepe','Edgecolor','none') 
%surf(tmesh,-xmesh,sol_pdepe','Edgecolor','none') 
xlabel('Time (seconds)') 
ylabel('Distance (m)') 
zlabel('Temperature (C)') 
title('Microwave Ablation Numerical Solution') 
grid on 
hold off 

  
function [c, f, s] = pdefun(x, t, u, DuDx) 
    global D 
    c = 1; 
    f = D*DuDx; 
    s = 0; 
end  

  
function u0 = ic(x) 
    global T_core 
    u0 = T_core; 
end 

  
function [pl,ql,pr,qr] = bc(xl,ul,xr,ur,t) 
    global T_m T_core 
    pl = ul-T_m; 
    ql = 0; 
    pr = ur-T_core; 
    qr = 0; 
end  
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Appendix C: MATLAB Code for Final Numerical Solution 

%BENG 221 Project Microwave ablation of a hepatic tumor (numerical solution 

to the original bioheat function) 

close all; clc 

%Constants 

global D U  E a1 a2 a3 T_0 rho_liver c_liver 

k = 0.512;%W/(m*K); thermal conductivity 

rho_bl = 1000; %blood density; kg/m3 

rho_liver = 1060;  %liver density; kg/m3 

c_bl = 4180; %specific heat of blood J/(kg*K) 

c_liver = 3600; %specific heat of liver J/(kg*K) 

w = 0.0064; %Blood perfusion rate; 1/s 

T_0 =37; %Initial temperature 

a1 =0.0697; %a1-3 constants for electric conductivity constant 

a2=85.375; 

a3=2.173; 

E = 800; % average electric field 

xmesh =0:0.0001:0.06; %distance range in m 

tmesh = 0:0.1:300; %time duration in s 

D = k/(rho_liver*c_liver); % Rearranged diffusion constant 

U = rho_bl*c_bl*w/(rho_liver*c_liver);  

%% Plotting using pdepe 

sol_pdepe = pdepe(0,@pdefun,@ic,@bc,xmesh,tmesh); 

figure () 

surf(tmesh,xmesh,sol_pdepe', 'EdgeColor','none') 

title('Numerical Solution to the Original Pennes Bioheat Equation using pdepe 

function ') 

xlabel('Time (s)') 

ylabel('Distance (m)') 

zlabel('Temperature (°C)') 

  

%% Partial differential equation function  

function [c, f, s] = pdefun(x, t, T, DTDx) 

% PDE coefficients functions 

global D U  a1 a2 a3 T_0 E rho_liver c_liver 

c = 1; 

f = D * DTDx; 

%Driving forces, heat generation and blood perfusion    

s = -U*(T-T_0)+ E^2/(2*rho_liver*c_liver)... 

   *(a3*(1-1/(1+exp(a1*(a2-T))))); 

end 

% -------------------------------------------------------------- 

%Initial condition function  

function T0 = ic(x) 

  

T0 = 37; %degree C 

end 

% -------------------------------------------------------------- 

%Boundary conditions function 

function [pl, ql, pr, qr] = bc(xl, Tl, xr, Tr, t)  

pl = 0; % No flux left boundary condition 

ql = 1;  % No flux left boundary condition 

pr = Tr-37; % Constant rigt boundary condition 

qr = 0;  % Constant rigt boundary condition 

end 


